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Abstract

We present the theory of “Markov decision processes (MDP) with rare
state observation” and apply it to optimal treatment scheduling and diag-
nostic testing to mitigate HIV-1 drug resistance development in resource-
poor countries. The developed theory assumes that the state of the process
is hidden and can only be determined by making an examination. Each
examination produces costs which enter into the considered cost func-
tional so that the resulting optimization problem includes finding optimal
examination times. This is a realistic ansatz: In many real world applica-
tions, like HIV-1 treatment scheduling, the information about the disease
evolution involves substantial costs, such that examination and control
are intimately connected.
However, a perfect compliance with the optimal strategy can rarely be
achieved. This may be particularly true for HIV-1 resistance testing in
resource-constrained countries. In the present work, we therefore analyze
the sensitivity of the costs with respect to deviations from the optimal ex-
amination times both analytically and for the considered application. We
discover continuity in the cost-functional with respect to the examination
times. For the HIV-application, moreover, sensitivity towards small devi-
ations from the optimal examination rule depends on the disease state.
Furthermore, we compare the optimal rare-control strategy to (i) constant
control strategies (one action for the remaining time) and to (ii) the per-
manent control of the original, fully observed MDP. This comparison is
done in terms of expected costs and in terms of life-prolongation. The pro-
posed rare-control strategy offers a clear benefit over a constant control,
stressing the usefulness of medical testing and informed decision making.
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This indicates that lower-priced medical tests could improve HIV treat-
ment in resource-constrained settings and warrants further investigation.
words:278/250

keywords: information costs, hidden state, bellman equation, optimal thera-
peutic strategies, diagnostic frequency, resource-poor
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1 Introduction

The theory of Markov decision processes (MDP) is a well established tool
to analyze situations in which the dynamics of a stochastic process may be
influenced by a decision maker. A basic component of a Markov control model
is the observability of the process: in standard Markov control theory the
process is assumed to be observable at all times, while in the theory of partially
observable Markov decision processes the information about the process is
incomplete. In both cases, the degree of information is predefined and cannot
be influenced by the decision maker. However, in many real world applications
(like medical therapies, asset management...) it is possible to decide whether
to deduce information or not - and this information is in general not gratis.
Instead, the problem is to find the right balance between optimal interaction
and reduction of information costs.

In this article, we present a model for Markov decision processes with infor-
mation costs. The process is assumed to be continuous in time, while the state
space is discrete. We define a suitable cost criterion including the costs of the
process and the costs for information and denote the corresponding Bellman
equation with reference to [1]. In this model, a control strategy has to declare
for each state x not only an action a, but also a lag time τ until the next state
observation.
Given the optimal strategy, we analyze how small deviations from this strategy
affect the cost criterion. The research question is motivated by the fact that
a perfect compliance with the optimal strategy may not be accomplished in
many real world applications. A meaningful example is the treatment of HIV-1
in Africa, which will serve as an application of the presented control model.
Due to limited infrastructure it may not be possible to follow a recommended
diagnostic surveillance scheme accurately. In this case, knowledge of potential
invariability with respect to patient health damage is required.
Many researchers have studied optimal treatment strategies against HIV, e.g.
[2–4]. However, the question of sensitivity with respect to deviations from
the optimal examination rule has not been addressed, and rare-state exami-
nation/medical testing has not been a part of the previous control approaches.
We believe, however, that it is an important pre-requisite for the implementa-
tion of such strategies.
After exposing the fundamental components of the HIV-model presented in [1],
we specify the optimal therapeutic strategy and analyze the sensitivity of the
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optimal costs with respect to changes in the examination lag times τ . Further-
more, we assess the benefit of information/interaction by comparing the opti-
mal treatment- and examination strategy of our framework with two opposed
modifications of the problem: (i) the case of constant control which consists of
maintaining one action for the remaining time without any further state exam-
ination, and (ii) the case of permanent control, which assumes full observability
and continuous interaction as in original MDP.
In order to analyze the differences between these approaches, we decompose
the costs into components of state-, action- and information costs. As a second
criterion for the quality of a therapeutic strategy we consider the probability of
death after fixed time intervals for the different approaches.

2 Theory of Markov control with rare state ob-

servation

In the following, we describe the Markov control model derived in [1] and com-
plement the theory by a sensitivity analysis with respect to deviations from the
optimal strategy.

2.1 The control model

We consider a continuous time Markov control process (Xt)t≥0 on a dis-
crete state space S. There is a finite set A of actions that are available
in order to influence the process. Given action a∈A, the dynamics of the
process are defined by the generator La where La(x,y)≥ 0 is the transi-
tion rate for a transition from x∈S to y∈S, y 6=x, while La(x,x) satisfies
La(x,x)=−

∑

y 6=x

La(x,y). The cost function c :S×A→ [0,∞) denotes the costs

produced by the process per unit of time depending on the actual state and the
chosen action. In the application, the states describe the health status of a pa-
tient, while the actions refer to different medical treatments. The cost function
measures the costs of the treatments as well as the health damage to the patient.

In opposition to original Markov control theory, we assume that the process
cannot be continuously observed and influenced. Instead, each examination
of the process produces costs kinfo> 0 which enter the cost functional, such
that a fundamental part of the optimization problem is to determine optimal
examination times. Controlling the process then proceeds according to the
following structure: Starting with some known state X0∈S at some exam-
ination time t0≥ 0 one chooses an action a∈A as well as an examination
lag time τ(X0)> 0 defining the next examination time t1= t0+τ(X0)>t0.
During the time interval (t0,t1] the (random) behavior of the process (Xt)
is fully described by the infinitesimal generator La and produces costs ac-
cording to the cost function c(·,a). We do not observe this behavior but
only determine the state Xt1 of the process at time t1. For this information
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expenses kinfo accrue. Knowing the new state Xt1 at time t1, we choose
again an action and a lag time and the procedure restarts. During a time in-
terval [tj ,tj+1) the action is fixed, i.e., it can only be changed after examination.

In this context, a strategy is a function

u :S→A×(0,∞], x 7→u(x)=
(

a(x),τ(x)
)

(2.1)

giving for each state x∈S both an action a∈A and an examination lag time
τ > 0. The lag time τ is allowed to be infinite which is appropriate in situations
where state examinations/interaction cannot change anything (e.g. because the
actual state is absorbing) and which in the same time will guaranty the existence
of an optimal strategy.
The set of all strategies is denoted by U .

2.2 Cost criterion and Bellman equation

As an optimality criterion we choose expected discounted costs over an infinite-
horizon. Given a strategy u∈U , an initial state x∈S and a discount factor
λ> 0, these are defined by

J(x,u)=E
u
x





∞
∑

j=0

e−λtj
(

C
(

Xtj ,a(Xtj ),τ(Xtj )
)

+e
−λτ(Xtj

)
kinfo

)



 (2.2)

where E
u
x stands for the expectation value with respect to the measure deter-

mined by x and u, while

C(x,a,τ) :=E
a
x

(∫ τ

0

e−λsc(Xs,a)ds

)

(2.3)

are the expected discounted costs for the time interval (0,τ ] when starting in
state x∈S and choosing action a∈A. Moreover, it holds tj+1= tj+τ(Xtj ).

The corresponding value function

V (x) :=min
u∈U

J(x,u) (2.4)

is characterized by the Bellman equation

V (x)= min
a∈A,τ∈[0,∞]

(

C(x,a,τ)+e−λτ
(

kinfo+Ta,τV (x)
)

)

(2.5)

where Ta,τ :R
|S|→R

|S|, Ta,τv := eLaτ ·v is the transition matrix on S for some
fixed lag time τ > 0 and action a, see [1].1

1For τ =∞ the right handside of 2.5 is given by C(x,a,∞) :=E
a
x

(∫∞
0

e−λsc(Xs,a)ds
)

.
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2.3 Sensitivity analysis w.r.t. deviation from optimal ex-

amination rule

In the following we will be interested in computing the cost functional J(x,u)
for strategies that slightly differ from the optimal strategy u∗. In order to give
a compact formula for J we introduce a few notations:
Given a strategy u(x)= (a(x),τ(x)), define a discount vector eτ ∈RS by eτ (x) :=
e−λτ(x) and a diagonal discount matrix Dτ ∈RS,S by Dτ (x,x) := eτ (x) and
Dτ (x,y) :=0 for x 6= y. Let P ∈RS,S with P (x,y) :=

(

eLa(x)·τ(x)
)

(x,y) be the
transition rule under u for the observed process Xt0 ,Xt1 , ..., and define Cu∈RS

by Cu(x) :=C(x,a(x),τ(x)).

Lemma 2.1. The cost functional J =J(·,u) (as a vector in R
S) for a strategy

u∈U is given by
J =(Id−DτP )−1(Cu+kinfoeτ ). (2.6)

Proof. In analogy to the Bellmann equation (see eq. (2.5)), J fulfills the recur-
sion

J(x)=C(x,a(x),τ(x))+e−λτ(x)
(

kinfo+Ta(x),τ(x)J(x)
)

which can be written in the form

J=Cu+kinfoeτ +DτPJ.

This is equivalent to
(Id−DτP )J=Cu+kinfoeτ .

It remains to take the inverse of Id−DτP , which exists by the following argu-
mentation. If the matrix Id−DτP was not invertible, the equation

(Id−DτP )v=0 (2.7)

would have a solution v∈R|S| 6=0. As Dτ is a diagonal matrix with diago-
nal entries 0<e−λτ(x)< 1, it’s inverse D−1

τ exists and is again diagonal with
D−1

τ (x,x)= eλτ(x)> 1. We rewrite (2.7) as Pv=D−1
τ v and take the maximum

norm on both sides. As P is a transition matrix, the entries of Pv are convex
combinations of the entries of v, such that it holds ||Pv||∞≤||v||∞. On the
other hand, it holds ||D−1

τ v||∞> ||v||∞, as each entry of v is multiplied by a
constant > 1. Together we get

||v||∞≥||Pv||∞= ||D−1
τ v||∞> ||v||∞,

a contradiction to v 6=0.

Theorem 2.2 (Continuity of J with respect to τ). The cost functional J as
a function of the strategy u(x)= (a(x),τ(x)) is continuous with respect to the
parameter τ(x) for all x∈S.

Remark 2.3. The continuity of J with respect to some τ(x), x∈S fixed, refers
to all components J(y,u), y∈S, of J . In other words, “small“ modifications in
τ(x) lead to ”small“ modifications in J(y,u) for all states y∈S, and not only
for y=x.
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Proof. The continuity of J with respect to τ follows from the continuity of the
expressions e−λτ , eLτ and C(x,a,τ) which are the τ -dependent components in

J =(Id−DτP )−1(Cu+kinfoeτ ),

compare equation 2.6.

3 Application

Given the theoretical ansatz of section 2, we will now formulate a model for
HIV-dynamics and analyze the valuefunction with respect to deviations from
the optimal strategy.

3.1 HIV Model

Action Space. In line with [1] we choose the set of treatments A= {a∅,a1,a2},
where a∅ denotes the absence of medical intervention, while a1 and a2 denote
the application of two distinct treatment lines. This choice is motivated by the
fact that in the sequel we will focus on HIV treatment in resource-constrained
settings in which only two treatment lines are available (a1 & a2).

State Space. In brief, the HIV-model contains four lumped states for each
virus type: The respective virus type can either be absent, or present in low-,
medium- or high copy numbers, denoted by 0, ℓ, m and h respectively. The
ℓ-states are reflecting states, which are justified by the inability to eradicate
HIV [5, 6] and the h-states are reflecting states, because there is a maximum
carrying capacity of the system.

According to their treatment susceptibility, our model further distinguishes
4 viral strains M (”mutants”): a strain WT (wild type) that is susceptible to
all treatment lines, a strain R1 which is susceptible to treatment 2 (a2), but
unaffected by (resistant to) treatment 1 (a1), a strain R2 that is susceptible to
a1, but unaffected by a2 and a highly resistant strain HR which is resistant to
all treatments (a1&a2).

We consider all permutations of viral strains M ∈{WT,R1,R2,HR} and re-
spective copy numbers nC(M)∈{0,ℓ,m,h} and patient death z, resulting in
state space dimension |S|=44+1=257, with S= {0,ℓ,m,h}4∪z.

In order to describe a state x∈S we will use the compact vector notation

x=
[

nC(WT), nC(R1), nC(R2), nC(HR)
]

.

For example, the state x=
[

0 , h, 0 , ℓ
]

describes the absence of wild type strains,
a high number of R1-mutants, the absence of R2-mutants and a ℓow number
of highly resistant mutants. The proposed Markov model of HIV-dynamics [1]
is particularly suited to describe the long term dynamics of drug resistance
development after treatment application.
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Generator Entries. The distinct treatments a∈A are related to distinct
generators La of our HIV-model. The basic transitions between copy number
states nC(M) are shown in Fig. 1 and exemplified for the wild type strain WT
below.

[

ℓ, ∗ , ∗ , ∗
]

kℓ(a,WT)

−−−−−−→
←−
δm

[

m, ∗ , ∗ , ∗
]

,
[

m, ∗ , ∗ , ∗
]

kWT
m,a
−→
←−
δh

[

h, ∗ , ∗ , ∗
]

, (3.8)

[

h, ∗ , ∗ , ∗
] dh−→z,

[

m, ∗ , ∗ , ∗
] dm−→z,

[

ℓ, ∗ , ∗ , ∗
] dℓ−→z, (3.9)

where ∗ indicates an arbitrary number of the respective virus strain (R1,R2 and
HR in the example above). The parameters kℓ,a and km,a denote the reaction
propensities of going from copy number ℓ to copy number m and from copy
number m to copy number h respectively (viral growth), which are decreased
depending on the treatment a∈{a∅,a1,a2}. The parameters δm and δh are
independent of the treatment and denote the reaction propensities for going
from copy number m to copy number ℓ and from copy number h to copy number
m respectively (virus elimination). The parameters dh>dm>dℓ denote the
propensity for the death of the patient. These parameters are unaffected by
the treatments, as well [1]. We assume that high viral burden (states h and
m respectively) increases the risk of death, whereas dℓ equals the propensity
for ”natural death”. The propensity for death was computed according to d =
1/(residual life expectancy), and is exemplified in [1].

The considered transitions (mutations) between viral strains M are depicted
in Fig 1. Specifically, mutation generates a ℓow number of viral particles from
either a medium or high number of viruses belonging to a distinct strain. Ex-
emplified for the wild type strain WT those are:

[

h, 0 , ∗ , ∗
] µR1

h (a,WT)
−−−−−−−→

[

h, ℓ, ∗ , ∗
]

,
[

m, 0 , ∗ , ∗
] µm,R1(1−η(a,WT))
−−−−−−−−−−−−−→

[

m, ℓ, ∗ , ∗
]

[

h, ∗ , 0 , ∗
] µ

WT,R2
h,a

−−−−−→
[

h, ∗ , ℓ, ∗
]

,
[

m, ∗ , 0 , ∗
] µWT→R2

m,a

−−−−−−→
[

m, ∗ , ℓ, ∗
]

[

0 , h, ∗ , ∗
] µh

R1→WT(a)
−−−−−−−−→

[

ℓ, h, ∗ , ∗
]

,
[

0 ,m, ∗ , ∗
]µR1,WT

m,a

−→
[

ℓ,m, ∗ , ∗
]

[

0 , ∗ , h, ∗
]µ

R2,WT
h,a

−→
[

ℓ, ∗ , h, ∗
]

,
[

0 , ∗ ,m, ∗
]µR2,WT

m,a

−→
[

ℓ, ∗ ,m, ∗
]

.

where the first two lines indicate mutation arising from the wild type strain
and the remaining two lines indicate mutations yielding the wild type strain.
The parameters µh,R1,a and µh,R2,a denote the propensity for the emergence-
and disappearance of a mutation that confers drug resistance to treatment 1
or 2 (a1,a2), respectively, emanating from copy number state h. Analogously
µm,R1,a and µm,R2,a denote the propensity for the emergence- and disappearance
of a mutation emanating from copy number states m. Note, that we consider
only the following mutations: WT↔R1, WT↔R2, R1↔HR and R2↔HR,
which is motivated by the fact, that a direct transition from WT↔HR is very
unlikely, because the genetic distance between the two viral strains is too large
to be overcome at once.

7



A B h

m

ℓ

0

high copy numbers

> 4000 cp/mL blood

low copy num-

bers < 50 cp/mL 

blood

medium copy 

numbers

no virus

k
ℓ,a

k
m,a

δ
h

δ
m

patient 

death

µ
h,X,a

µ
m,X,a

d
m

d
h

d
ℓ

WT     R1     R2     HR

[ * ,* ,* ,*]

wildtype, WT

resistant to tr. 2

R2

resistant to tr. 1

R1

highly resistant

 HR

µ
h,R1,a

µ
m,R1,a

µ
h,R2,a

µ
m,R2,a

µ
h,R1,a

µ
m,R1,a

µ
h,R2,a

µ
m,R2,a

Figure 1: Simplified HIV Model A: Transitions in between viral strains M in terms of
mutations in the virus’ genome. The horizontal line with the small boxes shall schematically
represent the viral genome and the codons (boxes) that are relevant for drug resistance devel-
opment. A blank box shall indicate the absence of any mutations, whereas the blue- and red
coloring indicates a pattern of mutations that confers resistance to treatment line one (blue
coloring, virus type R1) and -two (red coloring, virus type R2). B: Transitions between copy
number states nC .

The effect of treatment a is considered in the following way:

kMℓ,a =

(

1−η(a,M)

)

kℓ,∅, kMm,a=

(

1−η(a,M)

)

km,∅, (3.10)

µ
M,M̃
h,a =

(

1−η(a,M)

)

µM̃
h,∅, µM,M̃

m,a =

(

1−η(a,M)

)

µM̃
m,∅. (3.11)

The parameter η(a,M) is a constant that denotes the efficacy of treatment a∈
{a∅,a1,a2} on viral strainM ∈{WT,R1,R2,HR}; i.e if strainM is susceptible to
treatment, then 0<η≤ 1 and if the viral strain M is insusceptible to treatment
then η=0. The index ∅ denotes the absence of medical intervention (a∅), hence
η=0. The parameters kℓ,∅, km,∅, µh,∅ and µm,∅ denote the growth rates and
mutation rate in the absence of medical intervention (see Table A1).

The model building process as well as the process of parameter estimation
for the model are described in [1] in more detail. Final model parameters are
shown in the Table A1 (appendix).

Costs. We assume the cost function c to be of the form

c(x,a)= cS(x)+cA(a)

where cS measures the costs related to the health damage of the individual while
cA describes the treatment costs. The aim is thus to find a cost-effective strategy
that ensures good health of a patient. We parameterized our model in terms
of values that are representative for South Africa. The costs cS(x) of being in
the respective states x∈S were computed based on the average productivity
loss times the average daily monetary contribution of one individual (assessed
in terms of daily per capita GDP), where death is interpreted in terms of a
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complete loss in productivity, see [1]. The examination costs kinfo accrue each
time a medical test is made. The direct costs for treatment and examination
are displayed in appendix Table A1 together with the indirect costs for health
damage.
Given this structure of the cost function, also the value function V (optimal total
discounted costs) can be split up into parts of state costs VS (health damage of
a patient), action costs VA (costs for medical treatment) and information costs
Vinfo (costs for medical tests), see [1].

3.2 Optimal strategy in a resource-poor setting

We applied the theory described in Section 2 to the model presented in
Section 3.1 using the cost-parameters in Table A1 (appendix), which are
representative for South Africa. We computed the cost-optimal treatment- and
diagnostic strategy using a modified version of the standard policy-iteration
algorithm [7]. In our application, we set τmin=1 days and τmax=5000 days in
order to numerically solve the optimization problem. The computed optimal
strategy is shown in Table 1. In brief, there are two states, in which diagnostic
testing is indicated: state

[

{m} , 0 , 0 , 0
]

and
[

{h} , 0 , 0 , 0
]

. A switch to
treatment line a2 is indicated, if viral strain R1 is present, i.e. after resistance
development to treatment line a1. I.e., our computation indicates that it would
be cost-optimal to implement a sparse diagnostic surveillance depending on the
health status of the patient. Currently, this is not standard-of-care in South
Africa.

state
[

{m} , 0 , 0 , 0
] [

{h} , 0 , 0 , 0
] [

∗ , {ℓ,m,h} , 0 , 0
]

otherwise

action a1 a1 a2 a1
τ 11 45 ≥ τmax ≥ τmax

Table 1: Optimal strategy. Calculated optimal strategy for the resource-poor settings
(South Africa) giving the treatment, the examination lag time τ (in days) and the valuefunc-
tion (in US$) depending on the state of the patient. For clarity reasons, states are merged
according to their related treatment choice.

However, an exact implementation of the proposed diagnostic surveillance
may not be possible, because patients may not be able to perfectly comply with
the indicated scheme (shown in Table 1). Implementation of a diagnostic surveil-
lance scheme may be further complicated in resource-constrained settings due
to infra-structural deficiencies. We will in the next section assess the sensitivity
of the valuefunction with respect to deviations from the optimal examination
rule and in the section thereafter, we will compare the “optimal strategy with
rare state observations” with the two opposed cases in which the action is either
constant over all times (which corresponds to infinite lag times) or continuously
adapted to the process as in original Markov control theory without examination
costs (which stands for infinitesimally small lag times).
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3.3 Sensitivity analysis w.r.t. deviation from optimal ex-

amination rule

We have shown in Theorem 2.2 that the cost functional J is continuous with
respect to the lag time parameters τ(x) for all x∈S. In our application, we
have only two states (

[

m, 0 , 0 , 0
]

and
[

h, 0 , 0 , 0
]

) for which diagnostic testing
is indicated. We therefore computed the impact of τ -variations around the
optimum in Fig. 2A & B for the indicated states by using eq. (2.6). For state
[

h, 0 , 0 , 0
]

, the total costs sharply rise if τ is decreased or -increased (solid blue
line in Fig. 2A) in relation to its optimum value τ∗ (solid dot). The increase
of J(x) upon increasing values of τ are paralleled by an increase in JS(x) (the
”pure” state costs; dashed red line). When decreasing τ , the opposite is true,
namely JS(x) decreases, but the overall costs J(x) increase. Note that the slope
of JS(x) (dashed red line) corresponds to the cost-increase attributed to patient
health damage.

Although we observe a very sensitive response towards changes in τ for
state

[

h, 0 , 0 , 0
]

, for the other state,
[

m, 0 , 0 , 0
]

, we get much less sensitivity
towards deviations from τ∗ (see Fig. 2B, solid blue line and solid black dot). In
particular, upon increases in τ , total- (solid blue line) and state costs (dashed
red line) are only marginally increased.
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Figure 2: Sensitivity with respect to τ . Cost functional J(x,u) and JS(x,u) for x=
[h,0,0,0] (left graphic) and x=[m,0,0,0] (right graphic) with u varying in τ([h,0,0,0]) or
τ([m,0,0,0]) (while being optimal in all other parameters).

A summary in terms of a two-dimensional contour plot, which takes varia-

tion in both τ
(

[

h, 0 , 0 , 0
]

)

and τ
(

[

m, 0 , 0 , 0
]

)

simultaneously into account, is

shown in Fig. 3 and confirms the observations made from Fig. 2A&B, indicating
that if patients have a high viral load (state

[

h, 0 , 0 , 0
]

), they should strictly
comply with the optimal strategy. If we focus on the potential health damage
to the patient (dashed red lines in Fig. 2), we can conclude that there is little
margin if diagnostic testing is behind schedule for patients that are in state
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Figure 3: Sensitivity with respect to τ . Cost functional J(x,u) for x=[h,0,0,0] and u

varying in τ([h,0,0,0]) (x-axis) and τ([m,0,0,0]) (y-axis), while being optimal in all other
parameters.

[

h, 0 , 0 , 0
]

(high virus load). For state
[

m, 0 , 0 , 0
]

belated diagnosis will have
little consequences for the health of the patient. In a setting with constrained
resources this means that patients with high virus loads should be prioritized
for subsequent diagnosis over patients with less virus.

4 Comparison with constant control and origi-

nal Markov control theory

In this section we will compare the optimal strategy given in section 3.2 to two
extreme cases: Namely, (i) the process under constant control, i.e. the action
is fixed for all times, and (ii) the case where we can permanently observe the
process and adapt the action, i.e. as in the original Markov control theory.
The resulting costs and the probability of death (which treatment is intended
to prevent) will be computed.

(i) The process under constant control refers to the condition in which an
action is initially chosen and maintained for the remaining time. It can be
associated to infinitesimal large information costs (kinfo=∞) which make testing
unaffordable (τ(x)=∞ for all x∈S). In the presented model this situation refers
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to the choice of either a∅, a1, or a2 for all times. The corresponding costs are
given by

Ja(x) :=E
a
x

(∫ ∞

0

e−λsc(Xs,a)ds

)

(4.12)

with a∈{a∅,a1,a2}. Especially, the choice of a=a∅ stands for ”natural” disease
process without medical intervention.

(ii) We assume that the process is all the time freely observable (kinfo=0) and
that actions can immediately be adapted. In our model, this immediately results
in vanishing lag times, i.e. τ(x)=0 for all x∈S, such that the discrete structure
of the cost functional (eq. (2.2)) gets lost and the given Bellman equation (2.5) is
not anymore suited to characterize the optimal strategy. Instead, this situation
corresponds to an original (continuous time) Markov control process. Here, a
deterministic stationary strategy is given by a function f :S→A, declaring for
each state which action to chose. The corresponding costs are given by

Ĵ(x,f) :=E
f
x

(∫ ∞

0

e−λsc(Xs,f(Xs))ds

)

(4.13)

fulfilling
λĴ(x,f)= c(x,f(x))+Lf(x)Ĵ(x,f), (4.14)

see [8]. The optimal strategy f∗ and the value function V̂ (x)= Ĵ(x,f∗)=
minf Ĵ(x,f) are characterized by the Bellman equation

λV̂ (x)=min
a∈A

(

c(x,a)+LaV̂ (x)
)

, (4.15)

with f∗(x)=argmina∈A

(

c(x,a)+LaV̂ (x)
)

, see [8].

The cost functional Ĵ correlates with the cost functional J defined in 2.2 in the
following way: Given a strategy f :S→A of the original Markov control process,
consider the strategy u∈U with u(x)= (f(x),τ0) for a τ0> 0 independent of x.
Setting kinfo=0 in 2.6 and taking the limit τ0→0 gives

J = (Id−Dτ0P )−1Cu

=
τ0

τ0
(Id−Dτ0P )−1Cu

=

(

1

τ0
(Id−Dτ0P )

)−1
1

τ0
Cu

τ0→0
−→ (λId−Lf )

−1cf

= Ĵ

with Lf (x,y)=Lf(x)(x,y) and cf (x)= c(x,f(x)), where the limit is de-
termined by considering the series expansion of the matrix exponential
P (x,y)= eLf(x)τ0(x,y) and the last equality follows by (4.14).
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kinfo=∞ kinfo=500 kinfo=0
constant control MDP wt.

rare obs.
original
MDPa∅ a1 a2

total costs (VS +VA+Vinfo) 107 350 76 790 70 030 69 149 61 420
netto costs (VS +VA) 107 350 76 790 70 030 66 855 61 420
state costs (VS) 107 350 76 024 66 940 65 116 59 589
P(X3y=z|X0=[h,0,0,0]) 0.44 0.22 0.15 0.15 0.13
P(X5y=z|X0=[h,0,0,0]) 0.63 0.34 0.24 0.23 0.21
P(X15y=z|X0=[h,0,0,0]) 0.95 0.69 0.62 0.60 0.54

Table 2: The netto costs are given by Ja([h,0,0,0]) in the case of constant control,
by VS([h,0,0,0])+VA([h,0,0,0]) in the case of MDP with rare state observation and by

V̂ ([h,0,0,0]) in the case of original MDP.
The probability of death P(Xt=z|X0=[h,0,0,0]) after 3, 5 or 15 years when starting in
state [h,0,0,0] was computed by analytically solving the Kolmogorov equations in the case
of constant control and in the original MDP setting, where we used the generator under
optimal control L∗(x,y)=La∗(x)(x,y). In the MDP with rare state observation setting, we
approximated P(Xt=z|X0=[h,0,0,0]) using a well-established Monte-Carlo-Method [9].

Obviously, it holds

Ja(x)≥V (x)≥ V̂ (x) ∀a∈A, (4.16)

where V is the valuefunction defined in (2.4): The first inequality follows from
the fact that the strategy of constant control is contained in the set of strategies
U over which we minimize in section 2.2, while the second inequality is due
to the fact that a continuous adaption of the optimal action choice combined
with cost free state information (kinfo=0) can only lead to an improvement of
the total costs. The same is true if we consider - instead of the total optimal
costs V - the netto costs Vnetto=VS+VA which are the total costs without
information costs. As both Ja and V̂ do not contain any information costs
(in setting (i) there are no tests at all and in setting (ii) information is for
free), considering the netto costs Vnetto instead of V is better suited to make a
comparison.
Table 2 shows the (netto) costs and the probability of death for setting (i) and
(ii) as well as for kinfo=500 (compare appendix Table A1).

We can make the following observations. In accord with (4.16), the costs
of the optimal MDP scheme with rare state observation go below those of
any constant control, while they exceed the costs of the original MDP scheme
with permanent optimal control. There is a huge difference between the costs
resulting of an absence of medical treatment (a∅ at all times) and those arising
under constant control with a1 or a2. While the values of the netto costs
all significantly differ from each other, the value of the total optimal costs
V ([h,0,0,0])=69149 arising from optimal control with rare state observation
is very close to the costs under constant control with a2. This means that in
terms of the total costs, the optimal strategy with rare state observation is
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only slightly better than a ”blind“/constant control which could challenge the
utility of medical testing. In fact, it is the reduction of action- and state costs
which justifies the medical tests.

In terms of survival benefit, the optimal MDP scheme with rare state
observation is better than the absence of medical intervention (a∅ at all times)
and better than a constant treatment with only therapy line a1, however, it
is only slightly better than a constant treatment with a2 for the time horizon
analyzed (3, 5 and 15 years), which is however much more expensive in terms
of treatment costs (netto costs − state costs). Also, for larger time horizons,
the differences between constant treatment with only a2 and the optimal MDP
scheme with rare state observation are expected to further increase.
Again, the biggest difference in the probability of death can be found when
comparing the absence of medical intervention with all other considered
strategies. This emphasizes that the fundamental step is to start a medical
treatment, while the details of the treatment strategy are secondary.

Best in terms of survival and costs is, as expected, the permanent control of
the original Markov Control problem. However, for many applications (as the
one considered here) the assumption of continuous and cost-free observation
and interaction is unrealistic. It is a matter of fact that information itself has a
worth, and it makes sense to take account of this worth. This is exactly what is
done by our model, where the value of the information costs on the optimization
problem is determined by the value of kinfo.

5 Conclusion

We presented a model for continuous time Markov decision processes that can
be observed and influenced at variable discrete time points. Each observation
produces costs which enter the cost functional such that the optimization
problem consists of finding for each state an action and a lag time determining
the date for the next examination. Given an adequate cost criterion we
discovered a continuity with respect to the lag times of all states which means
that ”small” deviations from the optimal strategy do not lead to a huge increase
(jump) in the costs.

We exemplified this continuity for HIV-therapies in Africa where a high
prevalence of HIV-infections coheres with a restricted infrastructure, which
complicates an exact adherence to testing dates. We found that sensitivity of
the expected costs towards “small” deviations from the optimal lag times τ∗

depend on the considered state: For the more critical state [h,0,0,0] (indicating
a high copy number of wild type virus) the costs sharply increase. However, for
the less critical state [m,0,0,0] (indicating a medium copy number of wild type
virus) the response towards changes in the lag time is not that problematic.
This means that a patient with high virus load should strictly comply with the
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next examination date, while a patient with medium virus load is more flexible.

In order to overview the range of possible costs we gave an upper bound
by considering constant strategies (no further adjustment of the action) and a
lower bound by calculating the costs for the original Markov control problem
(continuous interaction). We distinguished state-, action- and information
costs and found out that as for the netto costs (state costs + action costs)
the optimal strategy of the new model is clearly better than any constant
strategy and worse than the optimal continuous strategy (original MDP). The
differences in the probability of death are not that significant. It is mainly
the absence of medical intervention that dramatically decreases the chances of
survival.

Although the permanent control without information costs naturally delivers
the best results, a more realistic ansatz is to take into account the costs of state
testing - which is done by the proposed model.

As demonstrated in [1], the optimal strategy and the valuefunction strongly
depend on the cost parameter kinfo. An interesting future problem is to find out
about monotony and continuity of the time parameters and the valuefunction
with respect to this parameter - both within the framework of the new model
(at kinfo> 0) and with respect to the original Markov model (at kinfo=0).
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[1] S. Winkelmann, C. Schütte, and Max von Kleist. Markov control pro-
cesses with rare state observation: Theory and application to treatment
scheduling in HIV-1. Comm. Math. Sci., submitted, 2012.

[2] R. Luo, M. J. Piovoso, J. Martinez-Picado, and R. Zurakowski. Optimal
antiviral switching to minimize resistance risk in HIV therapy. PLoS One,
6(11):e27047, 2011.

[3] S. M. Shechter, M. D. Bailey, and A. J. Schaefer. A modeling framework
for replacing medical therapies. IIE Transactions, 40:861–869, 2008.

[4] E. A. Hernandez-Vargas, R. H. Middleton, and P. Colaneri. Optimal and
MPC switching strategies for mitigating viral mutation and escape. In
Preprints of the 18th IFAC World Congress Milano (Italy) August 28 -
September 2, 2011.

[5] D. Finzi, J. Blankson, J. D. Siliciano, J. B. Margolick, K. Chadwick,
T. Pierson, K. Smith, J. Lisziewicz, F. Lori, C. Flexner, T. C. Quinn, R. E.
Chaisson, E. Rosenberg, B. Walker, S. Gange, J. Gallant, and R. F. Sili-
ciano. Latent infection of CD4+ T cells provides a mechanism for lifelong
persistence of HIV-1, even in patients on effective combination therapy. Nat
Med, 5(5):512–517, May 1999.

15



[6] O. Lambotte, M.-L. Chaix, B. Gubler, N. Nasreddine, C. Wallon, C. Gou-
jard, C. Rouzioux, Y. Taoufik, and J.-F. Delfraissy. The lymphocyte HIV
reservoir in patients on long-term HAART is a memory of virus evolution.
AIDS, 18(8):1147–1158, May 2004.

[7] R. A. Howard. Dynamic programming and Markov processes. MIT Press,
1960.

[8] X. Guo and O. Hernandez-Lerma. Continuous-time markov decision pro-
cesses: Theory and applications. In Stochastic Modelling and Applied Prob-
ability. Springer, Heidelberg, 2009.

[9] D.T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J Comp Phys, 22:403–434,
1976.

param.[unit] value param.[unit] value param.[unit] value
δh [1/d] 6.13 ·10−2 µh,R1,∅ [1/d] 1.24 η(a1,{WT,R2}) 0.979
δm [1/d] 5.1 ·10−2 µm,R1,∅ [1/d] 4.34 ·10−2 η(a1,{R1,HR}) 0
kℓ,∅ [1/d] 0.13 µh,R2,∅ [1/d] 2.41 ·10−4 η(a2,{WT,R1}) 0.966
km,∅ [1/d] 0.13 µm,R2,∅ [1/d] 2.33 ·10−2 η(a2,{R2,HR}) 0
dℓ [1/d] 9.4 ·10−5 cA(a∅) [US$/d] 0 cS(L) [US$/d] 0
dm [1/d] 2.7 ·10−4 cA(a1) [US$/d] 0.3 cS(M) [US$/d] 2.2
dh [1/d] 5.5 ·10−4 cA(a2) [US$/d] 1.08 cS(H) [US$/d] 8.8
kinfo [US$] 500 λ‡ [1/d] 1.75 ·10−4 cS(z) [US$/d] 22.1

Table A1: General Model parameters. L denotes the set of states for which condition
nC(M)≤ ℓ for all possible virus mutants M holds, i.e.

[

≤ ℓ,≤ ℓ,≤ ℓ,≤ ℓ
]

. Set H is defined
as all states where at least one nC(M)>m and set M denotes the remaining states (except
death). ‡ Assuming an annual inflation of 6.2% for South Africa.
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