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Abstract: In the low copy number regime, the dynamics of chemically reacting systems is
accurately modeled as a continuous-time Markov chain and the associated probability density
obeys the chemical master equation. Parameter inference in such models is very challenging
for various reasons: large levels of noise implies that large amount of data is required for
identification, the presence of transient phases may shadow subsets of the parameters, and
accurate likelihood estimation requires the solutions to master equations. The latter is itself
a computational very challenging problem and although many approximate computational
methods have been proposed previously, the final implied accuracy in estimated rate parameters
is difficult to assess.
In this paper we look at the problem from the perspective of the Markov chain Monte
Carlo method. Assuming the existence of a practically exact, but expensive, master equations
solver, together with a cheaper, approximate alternative, we pick up the idea of preconditioned
Metropolis sampling. Here the solutions of full master equations almost always imply an accepted
step in the Markov chain, and consequently, step rejections are much cheaper. We investigate
the properties of this technique theoretically and via illustrative examples. Whenever a suitable
preconditioner is available, large savings in computational times are possible while the accuracy
in deduced parameters is identical to using the exact likelihood.

Keywords: Chemical Master Equation, Preconditioning Markov Chain Monte Carlo,
Metropolis Hastings.

1. INTRODUCTION

Systems biology is working towards describing complex
interactions and processes in biology by Bio-Chemical Re-
action Networks (Biological Networks for short). Through
advances in imaging and sequencing technologies, biolo-
gists are able to scope deeper and describe critical bi-
ological processes as paths on a complex biological net-
work. Current systems biology has been able to represent
metabolic processes of cells Kholodenko (2000), stem cell
fate paths MacArthur et al. (2009), gene transcriptions
Srivastava et al. (2002) and translation regulation pro-
cesses as biological networks. Blake et al. (2003) In the
last three decades it was shown by experimentalists that
the observed variation in the data can be attributed to
the inherent stochasticity in parts of the network where
low copy numbers are present.

The modeling of biological networks with intrinsic stochas-
ticity gives realistic forecasts of the system behavior. How-
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ever, to go further and use experimental data to infer the
reaction rates of the underlying model is a computationally
and mathematically challenging task. The critical aspect is
the computation of the likelihood function. The likelihood
function describes the conditional probability of observing
the data for a given parameter value. In engineering set-
tings where the noise is understood to be Gaussian and
additive, the likelihood function can be easily approxi-
mated by a mean dynamics of the system and some fixed
variance. However, if the system has intrinsic stochasticity,
then computing the likelihood requires the solutions to
equations such as the Chemical Master Equation (CME) or
the Fokker Planck equation. These equations are difficult
to solve numerically as they are prone to the curse of
dimensionality Higham (2008); Engblom (2009a).

While many numerical methods have been investigated to
solve the CME for given set of parameters, the accuracy of
these methods for the purpose of inferring parameters from
some given data is unclear. Let us see why: let LCME(O|σ)
be the likelihood function, given by the solutions of the
CME, that data O is observed for the parameter σ.
Similarly, let L�(O|σ) denote an approximate likelihood
constructed using some approximation of the CME. We
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say that the likelihood L� is biased if

‖LCME(O|σ)− L�(O|σ)‖ = f(σ), (1)

where f(·) is not a constant function. For many numerical
approximations of the CME the function f is unfeasible
to compute. With this in mind, when we use a biased
likelihood for finding a posterior distribution, there is no
simple rule on how the error in the likelihood translates
across into the error of the posterior. For scenarios when
we have a biased likelihood and computing f in (1) is
unfeasible, one must get samples from the true posterior
to verify the accuracy of the posterior constructed by
the biased likelihood. Computing approximations of the
CME which have a uniform error over the parameter space
is computationally demanding. This motivates the pro-
posal for a preconditioning MCMC algorithm (pcMCMC)
Efendiev et al. (2006) 1 . In summary, the pcMCMC has
two proposal steps in series for the same proposed state.
The first proposal step uses the biased likelihood to accept
or reject the new state. If the state is accepted in the first
proposal step, then that state needs to be accepted in the
second proposal step; this then involves the computation
of a likelihood made up of unbiased CME approximations.
The state which is accepted by both proposals in series is
a true sample of the posterior distribution of the unbiased
likelihood function.

The principle idea being that if the biased likelihood
is close to the unbiased likelihood (locally), then the
acceptance rate of the second proposal should be higher
than the first. Since the CMEs are only being computed
in the second proposal, having a higher acceptance rate
would imply that we are minimizing the amount of CMEs
we need to compute to find true samples of the posterior
distribution. The acceptance rate of the second proposal
is also an indicator of how close the biased likelihood
is to the unbiased likelihood in some local region of the
parameter space. In the sections below, we introduce the
CME and the parameter inference problem. Then, we
give an overview of the preconditioning MCMC method
followed by some illustrative examples.

2. CHEMICAL MASTER EQUATION

The population of Ns ∈ N species undergoing Nr ∈ N reac-
tions is described by the following sum of inhomogeneous
Poisson processes,

Xσ(t) := X(0) +

Nr∑
r=1

Pr

(∫ t

0

αr(Xσ(s), σ)

)
ρr. (2)

The state space of Xσ(t) is denoted by Ω and is a subset of

NNs
0 . The variable σ is an element of our parameter space

Σ ⊂ RNr
+ . The function αr : Ω× Σ → [0,∞) describes the

propensity/intensity at which the rth reaction occurs. The
stoichiometric vector, ρr ∈ MNs×1, gives the change in
population induced by the rth reaction. Many biological
processes’ populations are described by (2). Historically,
Thomas Kurtz investigated the convergence and analysis
of (2) applied to the field of stochastic epidemiology, and
for this reason we refer to (2) as the Kurtz process Ethier
and Kurtz (2009).

1 also refereed to as delayed acceptance by the statistics community
Golightly et al. (2015)

To find the probability of observing Xσ(t) in a state x ∈ Ω
at a time point t, we need to substitute the Kurtz process
into the Chapman–Kolmogorov equation. This will lead to
the evolution of the probability over the state space being
governed by the Chemical Master Equation (CME),

∂Pσ(x; t)

∂t
=

Nr∑
r=1

αr(x− ρr, σ)Pσ(x− ρr; t)−
Nr∑
r=1

αr(x, σ)Pσ(x; t).

(3)

Verbosely, the change in probability of observing a state
x at time t is equal to the transition probability of
coming from an adjacent state into x, minus the transition
probability of leaving the state x . The CME can be solved
by formulating a linear initial value problem (IVP):

dpσ(t)

dt
= Aσpσ(t) i.c. p(0), (4)

where pσ(t) is a vector indexed by states in the state
space and Aσ is an infinitesimal generator with columns
summing to zero.

Broadly speaking, there are three major strategies for
numerically approximating the solution to (4): Domain
reduction, Galerkin methods and Tensor decomposition.
An example of a domain reduction method is aggregation,
where the idea is to aggregate states where the distribu-
tion has a shallow spatial gradient reducing the number
of equations to solve Munsky and Khammash (2006);
Sunkara and Hegland (2010). In Galerkin methods, the
distribution is projected on a finite dimensional Hilbert
space spanned by a chosen set of basis functions. This
changes the IVP of the probability distribution to an IVP
of the weights of the basis representation of the proba-
bility distribution Engblom (2009b); Jahnke and Udrescu
(2010). Like in the continuous Galerkin methods, if the
distribution has some inherent regularity, choosing the
right basis functions can give a significantly smaller IVP
to solve. Lastly, a Tensor decomposition method exploits
possible tensor structure of the infinitesimal generator Aσ

Kazeev et al. (2014). It has been shown that representing
the generators of particular systems in a tensor format can
partially overcome the curse of dimensionality. All meth-
ods exploit some inherent structure to achieve a signifi-
cant speed-up over constructing an empirical distribution
using trajectory based methods. Since our focus is not on
any particular solver, we use the notational convention of
writing a � when we are referring to an arbitrary approxi-
mation method of the CME. Similarly, we denote P �

σ (x; t)
as the corresponding solution to the approximate CME.

2.1 Random Variables and Likelihood

In this section we familiarize ourselves with the notational
convention that will be used through this paper describing
random variables and their likelihoods. We begin with
the notational convention for the parameters we wish to
infer. As in earlier sections, we denote the parameter to

be inferred as σ ∈ Σ. The set Σ is a closed subset of RNp

0 ,
where Np is the number of parameters we are to infer.

Let Ot
n (the data) be the nth random variable governed

by the stochastic process Xσ(t) with probability pσ(t).
For simplicity we assume data from only two time points,
that is, snapshot data. The term O0

0 denotes the initial
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tion has a shallow spatial gradient reducing the number
of equations to solve Munsky and Khammash (2006);
Sunkara and Hegland (2010). In Galerkin methods, the
distribution is projected on a finite dimensional Hilbert
space spanned by a chosen set of basis functions. This
changes the IVP of the probability distribution to an IVP
of the weights of the basis representation of the proba-
bility distribution Engblom (2009b); Jahnke and Udrescu
(2010). Like in the continuous Galerkin methods, if the
distribution has some inherent regularity, choosing the
right basis functions can give a significantly smaller IVP
to solve. Lastly, a Tensor decomposition method exploits
possible tensor structure of the infinitesimal generator Aσ

Kazeev et al. (2014). It has been shown that representing
the generators of particular systems in a tensor format can
partially overcome the curse of dimensionality. All meth-
ods exploit some inherent structure to achieve a signifi-
cant speed-up over constructing an empirical distribution
using trajectory based methods. Since our focus is not on
any particular solver, we use the notational convention of
writing a � when we are referring to an arbitrary approxi-
mation method of the CME. Similarly, we denote P �

σ (x; t)
as the corresponding solution to the approximate CME.

2.1 Random Variables and Likelihood

In this section we familiarize ourselves with the notational
convention that will be used through this paper describing
random variables and their likelihoods. We begin with
the notational convention for the parameters we wish to
infer. As in earlier sections, we denote the parameter to

be inferred as σ ∈ Σ. The set Σ is a closed subset of RNp

0 ,
where Np is the number of parameters we are to infer.

Let Ot
n (the data) be the nth random variable governed

by the stochastic process Xσ(t) with probability pσ(t).
For simplicity we assume data from only two time points,
that is, snapshot data. The term O0

0 denotes the initial
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value. We denote the likelihood of observing Ot
n, for n =

1, . . . , No, at time t for a parameter set σ to be,

LCME(O
t
1, . . . , O

t
No

| σ) :=
No∏
n=1

Pσ

(
(Ot

n; t)| O0
0

)
. (5)

Similarly the approximate likelihood function constructed
with the approximate CME is given by,

L�(O
t
1, . . . , O

t
No

| σ) :=
No∏
n=1

P �
σ

(
(Ot

n; t)| O0
0

)
. (6)

Given a likelihood, using Bayes’ theorem, we can compute
the posterior distributions, that is, the probability of the
parameter given the data. We assume our prior is from a
uniform distribution. We denote

πCME(σ | Ot
1, . . . , O

t
No

) =
LCME(O

t
1, . . . , O

t
No

| σ)
CCME

, (7)

π�(σ | Ot
1, . . . , O

t
No

) =
L�(O

t
1, . . . , O

t
No

| σ)
C�

, (8)

to be the posterior distributions of the CME based like-
lihood and the approximate likelihood, respectively. Since
the normalizing constants CCME and C� are not known,
we use the Metropolis–Hastings algorithm (MH) to sam-
ple the posteriors Metropolis et al. (1953); Golightly and
Wilkinson (2005). An overview of the basic MH algorithm
step can be described as following: Let σ1 and σ2 be two
parameters in Σ. Let Q(·|·) be the proposal distribution
over Σ × Σ and L(·) the likelihood function. Given we
start at σ1, the acceptance probability of moving to σ2 is
given by

min

(
1.0,

Q(σ1|σ2)L(σ2)

Q(σ2|σ1)L(σ1)

)
.

Now we introduce the pcMCMC method, for an in-depth
study into the method please refer to Efendiev et al.
(2006). The pcMCMC algorithm has two proposal steps
in series. The new proposed state has to be accepted in
both steps before it is accepted as a new state in the chain.
In summary, the first acceptance probability is computed
using a biased likelihood. Once the new state is accepted
here, then in the second step the acceptance probability is
computed using an unbiased likelihood.

A single acceptance step of the pcMCMC can be written
down as follows: Let σ1 be the current state of the Markov
chain and σ2 the proposed transition state. Let τ1, τ2 ∼
Uniform(0, 1).

(P1) Accept σ2 in the first proposal step if

τ1 < min

(
1.0,

Q(σ1|σ2)L�(·|σ2)

Q(σ2|σ1)L�(·|σ1)

)
.

(P2) Accept σ2 in the second proposal step if

τ2 < min

(
1.0,

LCME(·|σ2)L�(·|σ1)

LCME(·|σ1)L�(·|σ2)

)
.

We speculate the following: If L� is close to LCME in
shape, then the much cheaper L� step should search
through and filter the parameter space and propose states
which we will later accept with a high probability. In turn,
a good preconditioner would minimize the number of CME
computations which then end in the rejection of a state. If
a good preconditioner is found, then we are accepting good
sample points with a very high acceptance rate Efendiev
et al. (2006).

3. NUMERICAL EXPERIMENTS

The rules of choosing a good preconditioner are still un-
clear. We will use the following examples to investigate
some different preconditioners for basic biochemical mod-
els. We set up the experiments to understand the accep-
tance rate of the second proposal step and construct the
chains in the following manner. Multiple pcMCMC chains
are run with different starting states, sampled from a
uniform distribution over the parameter space. The scaling
parameter is chosen such that the first proposal step has
an acceptance rate of ≈ 40%. Each chain is allowed to
take 20 acceptance steps (accepted by second proposal).
Then the average acceptance rate is given by the number
of accepted states in the second proposal divided by the
number of accepted states in the first proposal. The aver-
ages of acceptance rates of each of the chains are then used
to construct an empirical distribution of the acceptance
rate. To compare two preconditioners, we compare the two
empirical distributions of the acceptance rates.

3.1 Birth–Death Process

The Birth–Death process is a simple jump Markov process
given by

X(t) = x0 + P1(λt)− P2

(∫ t

0

βX(s)ds

)
.

The births are driven by a homogeneous Poisson process
at rate λ and the deaths driven by an inhomogeneous
Poisson processes with its rate dependent on β and the
state X(·). Given a starting population of x0 ∈ N, the
analytical solution of the probability density of observing
a state x ∈ N0 at some time t > 0 is given by Jahnke and
Huisinga (2007),

P(λ,β)(x; t) =

min(x,x0)∑
k=0

(
x0

k

)
g(t)k(1− g(t))x0� k hx� k(t)e� h(t)

x− k!
,

where g(t) = exp(−βt) and h(t) = λ(1 − exp(−tβ))/β.
The expectation and the variance of the Birth–Death pro-
cess is given by, Eλ,β(t|x0) = x0g(t)−h(t) and Vλ,β(t|x0) =
x0g(t)(1− g(t)) + h(t) respectively.

To demonstrate how the acceptance rate distribution
changes as we vary the degree of the approximation of the
likelihood, let us consider the following approximation:

P τ
(λ,β)(x; t) :=

1√
2πVλ,β(t|x0)

exp

(
−
(x− τEλ,β(t|x0))2

2Vλ,β(t|x0)

)
.

Here τ ∈ R+ is an experimental parameter we can choose
to change the quality of the approximation. To produce
data to infer over we used the parameters λ = 40 and
β = 2 such that the steady-state distribution of the birth-
death process is Poissonian with mean 20. Using SSA we
generated a total of 50 independent trajectories starting
from initial conditions chosen uniformly in [0, 40] and
observed at 10 equidistant points in time in [0, 1]. In Fig. 1,
we see that at τ = 1 we have the highest acceptance
rate. Here the preconditioner does a very good job in that
the number of samples from the true posterior is very
nearly equal to the number of true likelihoods computed
— despite the overall ≈ 40% acceptance rate.
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Fig. 1. The empirical acceptance rate as a function of
the parameter τ . Close to τ = 1 the preconditioner
ensures that almost all steps proposed by the pre-
conditioner will later be accepted by the unbiased
likelihood.

3.2 Boomerang

We next consider a two dimensional jump Markov process
where its CME does not have known analytical solutions.
We approximate the CME of this model using the Opti-
mal Finite State Projection method (OFSP). The OFSP
methods error is independent of the model parameters
Sunkara and Hegland (2010). The stochastic process of
the biological system is given by the following:

(
a(t)
b(t)

)
λ,β

=

(
a0
b0

)
−
(
1
1

)
× P

(∫ t

0

βa(s)b(s)ds

)

+

(
1
0

)
× P (λ) +

(
0
1

)
× P (λ) . (9)

The system consists of two species (species a and b),
each being born at a rate λ. When the two species come
in contact, they annihilate each other at rate β. The
steady state distribution of this system is shaped like a
boomerang, with its mean and mode not coinciding (see
Fig. 2).

In this example we will consider using two different pre-
conditioners and investigate their enhancements to the
acceptance rates. The first preconditioner will be a Gaus-
sian approximation with the mean and the covariance
computed via the moment equations given in Engblom
(2006); Golightly and Wilkinson (2005); Sotiropoulos and
Kaznessis (2011); Frhlich et al. (2016). The second precon-
ditioner will also be a Gaussian approximation, however,
the mean will be computed with all higher order moments
set to zero and the covariance will be approximated by the
sample covariance of the data. If we denote Eλ,β(t) to be
the expectation and Cλ,β(t) to be the covariance at time
t calculated via the first two moment equations, then the
first preconditioner is given as

P̂(λ,β)(O; t) := (1/
√

2πVλ,β(t|x0))

×e−1/2(O−Eλ,β(t))Cλ,β(t)
� 1(O−Eλ,β(t))

T

(10)
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Fig. 2. The solution of the CME for t = 100 for the process
(9). The intersection of the blue lines indicates the
expectation.

with O being the data. For the second preconditioner, we
denote the expected value computed by setting all higher
moments to zero as Eλ,β(t) and the sample covariance of
the data by Cov. Then the approximate probability of
observing a data point O at time t for a given parameter
set λ, β is:

P̃(λ,β)(O; t) := (1/
√
2πCov)

×e−1/2(O−Eλ,β(t))Cov� 1(O−Eλ,β(t))
T

(11)

To construct the empirical distribution of the second
proposal’s acceptance rate, we perform the following steps.
Firstly, we find the scaling parameter such that the MCMC
with the likelihood LCME has an acceptance rate of
approximately 40%. This means that if no preconditioner
is applied and a full likelihood is used, then we expect
to find that roughly sixty percent of CMEs computed
would lead to a rejection step. The principle is that if the
preconditioner is good, then the same scaling parameter
should give a higher acceptance rate. For the experiment
conducted here, the scaling parameter was found to be 0.4.

Once the scaling parameter is fixed, we choose 400 random
start points from a uniform distribution over the interval,
[0.7, 1.4] × [0.007, 0.014], in the parameter space. With
each starting point, we evolve a pcMCMC chain to a
length of 20. Then for each chain, we divide the number of
successful samples (20 in this case), by the total number of
states accepted in the first proposal step. This gives us a
single sample from the empirical distribution of the second
proposal step. Then we plot the acceptance rates samples
as a histogram (see Fig. 3).

We used the following data to fit: At t = 0.0 (a0, b0) =
(5, 5). Then at t = 15 we fit five i.i.d data points:
(13, 8), (14, 7), (7, 17), (8, 10) and (8, 11). Fig. 3 shows the
empirical densities of the acceptance rate (P2) of using

the preconditioner P̂ and P̃ . Since P̂ has information
of the mean and the variance we expect this method to
be a very good preconditioner. P̃ has lower acceptance
rates since it only uses the information of the mean and
the covariance was the sample covariance of the data.
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Fig. 1. The empirical acceptance rate as a function of
the parameter τ . Close to τ = 1 the preconditioner
ensures that almost all steps proposed by the pre-
conditioner will later be accepted by the unbiased
likelihood.

3.2 Boomerang

We next consider a two dimensional jump Markov process
where its CME does not have known analytical solutions.
We approximate the CME of this model using the Opti-
mal Finite State Projection method (OFSP). The OFSP
methods error is independent of the model parameters
Sunkara and Hegland (2010). The stochastic process of
the biological system is given by the following:

(
a(t)
b(t)

)
λ,β

=

(
a0
b0

)
−
(
1
1

)
× P

(∫ t

0

βa(s)b(s)ds

)

+

(
1
0

)
× P (λ) +

(
0
1

)
× P (λ) . (9)

The system consists of two species (species a and b),
each being born at a rate λ. When the two species come
in contact, they annihilate each other at rate β. The
steady state distribution of this system is shaped like a
boomerang, with its mean and mode not coinciding (see
Fig. 2).

In this example we will consider using two different pre-
conditioners and investigate their enhancements to the
acceptance rates. The first preconditioner will be a Gaus-
sian approximation with the mean and the covariance
computed via the moment equations given in Engblom
(2006); Golightly and Wilkinson (2005); Sotiropoulos and
Kaznessis (2011); Frhlich et al. (2016). The second precon-
ditioner will also be a Gaussian approximation, however,
the mean will be computed with all higher order moments
set to zero and the covariance will be approximated by the
sample covariance of the data. If we denote Eλ,β(t) to be
the expectation and Cλ,β(t) to be the covariance at time
t calculated via the first two moment equations, then the
first preconditioner is given as

P̂(λ,β)(O; t) := (1/
√
2πVλ,β(t|x0))

×e−1/2(O−Eλ,β(t))Cλ,β(t)
� 1(O−Eλ,β(t))

T

(10)
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Fig. 2. The solution of the CME for t = 100 for the process
(9). The intersection of the blue lines indicates the
expectation.

with O being the data. For the second preconditioner, we
denote the expected value computed by setting all higher
moments to zero as Eλ,β(t) and the sample covariance of
the data by Cov. Then the approximate probability of
observing a data point O at time t for a given parameter
set λ, β is:

P̃(λ,β)(O; t) := (1/
√
2πCov)

×e−1/2(O−Eλ,β(t))Cov� 1(O−Eλ,β(t))
T

(11)

To construct the empirical distribution of the second
proposal’s acceptance rate, we perform the following steps.
Firstly, we find the scaling parameter such that the MCMC
with the likelihood LCME has an acceptance rate of
approximately 40%. This means that if no preconditioner
is applied and a full likelihood is used, then we expect
to find that roughly sixty percent of CMEs computed
would lead to a rejection step. The principle is that if the
preconditioner is good, then the same scaling parameter
should give a higher acceptance rate. For the experiment
conducted here, the scaling parameter was found to be 0.4.

Once the scaling parameter is fixed, we choose 400 random
start points from a uniform distribution over the interval,
[0.7, 1.4] × [0.007, 0.014], in the parameter space. With
each starting point, we evolve a pcMCMC chain to a
length of 20. Then for each chain, we divide the number of
successful samples (20 in this case), by the total number of
states accepted in the first proposal step. This gives us a
single sample from the empirical distribution of the second
proposal step. Then we plot the acceptance rates samples
as a histogram (see Fig. 3).

We used the following data to fit: At t = 0.0 (a0, b0) =
(5, 5). Then at t = 15 we fit five i.i.d data points:
(13, 8), (14, 7), (7, 17), (8, 10) and (8, 11). Fig. 3 shows the
empirical densities of the acceptance rate (P2) of using

the preconditioner P̂ and P̃ . Since P̂ has information
of the mean and the variance we expect this method to
be a very good preconditioner. P̃ has lower acceptance
rates since it only uses the information of the mean and
the covariance was the sample covariance of the data.
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This preconditioner still resulted in a 30% increase in the
acceptance rates when compared to no preconditioning.
Both preconditioners have substantially decreased the
number of rejection steps.

We investigate the quality of the samples gained from the
pcMCMC chains by analyzing their respective autocorre-
lation functions (ACF). We use the SSA to generate 25
data points at t = 15. We start the process (9) with an
initial population of (a0 = 5, b0 = 5) and the parameter
values (λ = 1.0, β = 0.01). This data is the same for all

chains. Each chain: preconditioned with P̂ ; preconditioned
with P̃ and no preconditioning, is run for a length of 1000
states. We use the same scaling parameter for all three
chains (S = 0.15), to compare the decay of the ACFs and
the acceptance rates of the second proposal. In Figure 4
we see the ACFs of the three chains for the parameter
β. The ACFs for the parameter λ decay similarly to β
(see Fig. 5). The three chains have a similar decay to
zero. Hence, we thin the three chains by a lag of 50. In
this particular example, preconditioning gave us the same
quality of points at a higher acceptance rate, that is, less
CMEs were computed for the same quality of samples. We
see this further in Figure 6, the samples of the respective
target distributions all fall within the same region and have
a similar overall shape.
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Fig. 3. Empirical distribution of the acceptance rate gener-
ated from 400 different starts from a uniformly distri-
bution over, [0.7, 1.4]×[0.007, 0.014], in the parameter
space.

Lastly, we do a simple comparison of the run times of the
two preconditioners and the non preconditioned case. It
must be noted that the underlying code is not optimized
to give a rigorous time comparison. To get a general
understanding of the computation time, we conduct a
numerical experiment where we compute 100 i.i.d. chains
of length 50 for the two preconditioners and with no
preconditioner. We time how long each chain takes to
accept 50 states in the second proposal. The data and
scaling factors are similar to the experiment for finding
the empirical distribution of the acceptance rates. We see
in Figure 7 that the preconditioner using the mean and the
variance, P̂ , has on average twice the computation speed
as the no preconditioning method. The fixed variance
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Fig. 4. Autocorrelation functions of the chains in the
parameter β.
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Fig. 5. Autocorrelation functions of the chains in the
parameter λ.
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Fig. 6. Sample points of the target distribution gained
after thinning the chains of the respective different
likelihood approximations. The chains were thinned
with a lag of 50 states.
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preconditioner, P̃ , has on average one and a half times
the speed as the no preconditioning method.
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Fig. 7. Computation time of 100 i.i.d chains of length 50
with the respective preconditioner method.

4. CONCLUSION

It is well known that solving CMEs is computationally
demanding. Using the preconditioning MCMC method we
can maximize the ratio between the number of target
samples and the number of CME computations. We saw
through our numerical experiments that even simple pre-
conditioners can give an increase in the acceptance rate in
the second proposals (where the CMEs are computed). We
saw even with a 90% acceptance rate in the second pro-
posal, the target samples were uncorrelated. Furthermore,
the acceptance rate of the second proposal can be seen as
a goodness of fit estimate of how close the likelihood in
the preconditioning step is to the likelihood in the second
proposal step. The ingredients for constructing a good
preconditioner is a question for future research.
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