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1. Inverse problems recap

● Inverse problem:

● Infer causal factors from observations that produced them

● estimate θ, M to maximize accordance 

with data

● Assumptions! i.e. usually                    

● error types:

ηi∼N (0,σ i
2)
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1. Inverse problems recap

● writing down Likelihood according to error model:

    additive error

proportional to least squares problem

     proportional error

proportional to weighted least squares

L y=∏
i=1

N
1

√2πσ
2
e

−( yi−xi)
2

2σ
2

l y=log(√2πσ
2
)+

1

2σ
2 (∑

i=1

N

−( yi−xi)
2)

yi=x i∣M ,θ+ηi , ηi∼N (0,σ i
2)

l y∝∑
i=1

N

( y i−xi)
2

yi=x i∣M ,θ(1+ηi), ηi∼N (0,σ i
2)

yi=x i∣M ,θ+ϵi , ϵi∼N (0, xiσi
2)

l y∝∑
i=1

N ( y i−xi)
2

xi
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2. Application

● pandemia of H1N1 in 2009 (Swineflu)

● children have the highest risk of hospitalization

● used Oseltamivir (Tamiflu) for treatment

● little known about Tamiflu in infants → duration of drug 
therapy?

● virus quantification at Robert-Koch institute, determined from 
qtip sample

● data points for 36 children, 2 to 5 data points per patient 

→ sparse

● 91 datapoints overall
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2. Application

● assume decay of virus load with treatment to be:

● which                                                    

            will minimize the error?

● → infer                                            time when virus load is

     unrecognizable

● → equal to lower limit of quantification, LLQ = 10 

V estimated(i , t)=x0(i)e
−t CLv(i)

x0(i) initial viral load ,
copies
ml

CLV (i) virus clearance ,
1
day

t∅(i)=log( x0(i)

10 ) 1
CLV (i)
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2. Application

● error models:

                      exponential     proportional

● → both turn into additive error model when taking logarithm

● fitting:

weighted, or
 

not weighted

yi=x i∣θ ,M e
ϵi yi=x i∣θ ,M (1+ϵi)

log( y i)=log (xi∣θ ,M )+log (1+ϵi)log( y i)=log (xi∣θ ,M )+ϵi

argmin
x0(i) ,CLV (i)

∑
t

(V estimated (i , t)−V observed (i , t))
2

V observed(i , t )

argmin
x0(i) ,CLV (i)

∑
t

(V estimated (i , t)−V observed (i , t))
2
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2. Application

● which means

● → Censoring

● →                 [ 2.5 , ∞ ) 

argmin
x0(i) ,CLV (i)

∑
t

((x0(i) e
−t CLV (i ))−V observed(i , t ))

2

weight

with (V estimated(i , t )−V observed(i , t ))
2
=0

if V estimated(i , t )⩽10 ∧ V observed(i , t)⩽10

CLV (22)
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2. Application
● choices in R:

● nlm: Gauss-Newton type algorithm

● optim: Nelder-Mead, quasi-Newton

● convergence issues:

● → use V(i,0) as start value for x0

● multistart for Clv from -10 to 10 in 0.5 sized steps

● choose parameter estimates with minimal objective function 
value
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3. Population approaches

How to model?

● fit individual data for each patient

● averaging, use mean or median of all data points at each 
time t

● averaging, use mean or median of virus type grouped 
data

● use NLME (non linear mixed effect modelling)
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3. Population approaches

● example for fitted curves:

● enough data points available



12

3. Population approaches

● Optimization landscapes:
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3. Population approaches

● influence of weight and grouping on Clv

● number of data points at 
time 0 for 

● all viruses: 36
● A sensitive: 18
● A resistant: 7
● B sensitive: 11
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● CLv is very dependent on 
measure and weights

● big differences between 
virus types

● robust to noise

                                    3. Population approaches
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4. Fits for individual patients

● example for fitted curves:

● some patients don‘t behave as expected

● least assumptions made in fitting
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4. Fits for individual patients

● Optimization landscapes:

● ugly landscape, big range of CLv legitimately possible

because of sparsity

● assume no error if we fit only 2 points
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4. Fits for individual patients

● Distributions over all patients:
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4. Fits for individual patients

● influence of noise

● not robust to noise, CLv [0.9, 1.7] → treatment time influence
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5. NLME

● approach for sparse data

● population model is collection of models of individual observations

● response variability reflects errors and intersubject variability

● N patients, unknown parameters 

●

● f nonlinear model

●     partial observations

● Assumptions:

●

●

Y i=f ( xi∣θi)+ϵi(σ) θi=θ pop+ηi (Ω)

ϵi(σ) measurement errors i . i .d .∼N (0,σi
2)∧independent of randomeffects

θpop ,Ω ,σ

θi random effects ∼N (θpop ,Ω)∧independent among groups

Y i
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5. NLME

● R: nlme(), but was not documented understandably

● Matlab: nlmefit(), convergence issues → had to use nlmefitsa(),

 expectation maximization stochastic algorithm

● exponential model:
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5. NLME

● exponential error model:
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5. NLME
● proportional error model:
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5. NLME
● additive error model + log fit:
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● additive error model + log fit:

original

with noise
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5. NLME
● additive error model + log fit:

● very robust to noise

● both random effects go to 0 → try model with only one random 
effect

● random effect on x0 and CLv: BIC = 462.26

● random effect on x0 only:        BIC = 460

● random effect on CLv only:      BIC = 476.87

● overall parameters: 

● exponential    43345 x0    0.8715 CLv

● proportional    88409 x0    1.1723 CLv

● additive log     50784 x0    0.8646 CLv
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6. Summary
● sparse data: fitting to individual patient data makes least 

assumptions → would be best, but not robust to errors

● fitting on pooled data is robust but doesn‘t tell us much about 
single patients

● pooled fitting is a good approximation if we knew what covariate 
groups data best (i.e. age, virus type, …)

BUT

● NLME is the best way to deal with sparse data, robust to errors 
and keeps characteristics of the groups (patients)

● NLME has easy ways of checking whether it‘s assumptions are 
met for the input data 

● easy to try out different error models
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7. Sources
● Rath, von Kleist, Tief et al: Virus load kinetics and resistance 

development during Oseltamivir treatment in infants and children 
infected with Influenza A (H1N1) 2009 and Influenza B viruses, 
The Pediatric Infectious Disease Journal, Volume 31, September 
2012, p.899-905

● von Kleist, Sunkara: Numerics for Bioinformaticians, Semester 1 
Lecture 15, 2017, 
http://systems-pharmacology.de/wp-content/uploads/2017/02/Poste
rior2.pdf
, last accessed 15.07.2017 

● Huisinga: Nonlinear Mixed Effect Modelling, 2016, PharmetrX 
module, Universität Potsdam

● The MathWorks, Inc.: nlmefit Documentation, 
https://de.mathworks.com/help/stats/nlmefit.html, last accessed 
17.07.2017

● Ette, Williams: Pharmacometrics. The Science of Quantitative 
Pharmacology, Wiley 2007

http://systems-pharmacology.de/wp-content/uploads/2017/02/Posterior2.pdf
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